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Finite-Time Cooperative Engagement
Tansel Yucelen , Zhen Kan , and Eduardo Pasiliao

Abstract—A smooth finite-time distributed control architecture is
introduced and analyzed for the cooperative engagement problem.
Using a time transformation method as well as Lyapunov stabil-
ity theory, it is shown that the proposed architecture guarantees
finite-time cooperative engagement in that the difference between
the positions of each agent and a time-varying target, where this dif-
ference represents a dynamic equilibrium point, vanishes in a-priori
given, user-defined finite time. In addition, this finite-time conver-
gence is achieved without dependence on the initial conditions
of agents and in the presence of unknown but bounded velocity
of the target. Specifically, we first time transformed the proposed
smooth finite-time distributed control architecture into an infinite-
time (that is, stretched) interval. This time transformation method
is then allowed to utilize tools from standard Lyapunov stability
theory in which we analyze convergence properties of this archi-
tecture and boundedness of local control signals of each agent in
this infinite-time interval. While this note focuses on a particular
problem in the context of multiagent systems, the proposed time
transformation method and the analysis procedure can be used for
many other problems, where a-priori given, user-defined finite-time
convergence is necessary with smooth control laws.

Index Terms—Cooperative engagement, distributed control,
finite-time control, networked multiagent systems.

I. INTRODUCTION

A. Literature Review and Motivation

We are rapidly moving toward a future in which vehicle teams
(henceforth, referred as networked multiagent systems) will au-
tonomously perform a broad spectrum of operations in both civilian
and military environments. These operations include collaborative ex-
ploration; environment surveillance; target tracking; search and rescue;
nuclear, biological, and chemical attack detection; and cooperative en-
gagement; to name but a few examples. As a consequence, distributed
control, which enable networked multiagent systems to work in coher-
ence through local information exchange between agents, has been the
focus of thriving research activity during the last two decades (e.g., see
[1]–[3] for a throughout coverage of the recent progress in distributed
control theory and algorithms).
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Most of the existing distributed control approaches (see, for exam-
ple, [4]–[9] and references therein) for networked multiagent systems
consider asymptotic (respectively, semistable) convergence of the agent
states to static equilibrium points of interest (respectively, continuum
of equilibria). However, if the equilibrium point under consideration
is dynamic such as in applications of time-varying target tracking and
engagement, containment control with time-varying leaders, and dy-
namic data fusion, just to mention a few, it is well-known that asymp-
totic convergence guarantees degrade to uniform ultimate boundedness
around this equilibrium point (see, for example, [10]–[14] and refer-
ences therein), unless possibly nonsmooth (that is, non-Lipschitzian)
distributed control algorithms (discussed later in detail) are utilized. In
addition, it should be noted from a practical standpoint that there are
many multiagent systems applications like the ones mentioned earlier
involving dynamic equilibrium points of interest as well as rendezvous
and the ones requiring sequential execution of complex network oper-
ations (that is, multiagent automation), where finite-time convergence
is desired.

To this end, there are several notable results in the literature that pro-
pose distributed control algorithms for networked multiagent systems
with finite-time convergence guarantees (see, for example, [15]–[26]
and references therein), which utilize and generalize nonsmooth control
tools and methods used, for example, in the seminal papers [27], [28].
In addition to finite-time convergence, another advantage of these al-
gorithms is that convergence can be guaranteed with respect to not only
static equilibrium points of interest but also dynamic ones. Yet, a draw-
back of these architectures is that their finite-time guarantees depend
on initial conditions of agents. Thus, it is not possible to assign a-
priori, user-defined finite-time necessary for many practical networked
multiagent systems applications while using these algorithms.

For example, military simultaneous strike requires munitions
launched from distant locations to arrive at a desired target at a user-
defined finite time. As another example, autonomous vehicles are de-
sired to reconfigure their formation within a user-defined finite time
when switching tasks between surveillance and target tracking. How-
ever, existing results in, for example, [15]–[26] do not give user the
flexibility to assign a desired convergence time. Moreover, since these
methods achieve finite-time convergence via utilizing nonsmooth lo-
cal control signals (typically signum functions-based distributed con-
trollers), they may have chattering in their control signals. From this
standpoint, while a practice is to smoothen their dynamics, e.g., by
replacing signum functions with tangent hyperbolic functions [29],
[30], this process leads to the loss of desired finite-time convergence
achieved by these algorithms.

B. Contribution

The contribution of this note is the introduction and the analysis
of a smooth finite-time distributed control architecture for cooperative
engagement problem. To this end, we consider a networked multiagent
system consisting of agents locally exchanging information with each
other, where a subset of agents can sense the position of a time-varying
target. Using a time transformation method as well as the Lyapunov
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stability theory, it is shown that the proposed architecture guarantees
finite-time cooperative engagement in that the difference between the
positions of each agent and a time-varying target, where this difference
represents a dynamic equilibrium point, vanishes in a-priori given,
user-defined finite time. In addition, this finite-time convergence is
achieved without dependence on the initial conditions of agents and in
the presence of unknown but bounded velocity of this target. Specif-
ically, we first time transform the proposed smooth finite-time dis-
tributed control architecture having a dynamic equilibrium point into
an infinite-time (that is, stretched) interval. This time transformation
method is then allowed to utilize tools from the standard Lyapunov
stability theory in which we analyze convergence properties of this
architecture and boundedness of local control signals of each agent in
this infinite-time interval.1

Unlike the results reported in, for example, [15]–[26], the proposed
architecture guarantees smooth and a-priori given, user-defined finite-
time convergence. It should be also noted that similar smooth control
algorithms are used in [32], [33] for the design of guidance algorithms
for sole vehicles using the sliding mode control theory, in [34]–[37]
for consensus and consensus-like algorithms for networked multiagent
systems with static continuum of equilibria, and in [37]–[39] for net-
worked multiagent systems containment problems with fixed leader
dynamics (that is, leaders having predefined dynamics that do not ac-
cept external commands).2 We emphasize here that this note’s results go
beyond [32]–[39] not only owing to the fact that a networked multiagent
system problem having a dynamic equilibrium point is considered (that
is, engaging a time-varying target without the need for its dynamics),
but also the proposed analysis procedure utilizes a time transformation
method along with the Lyapunov stability theory, which differs from
the analysis steps in [32]–[39].

In particular, unlike the analysis steps adopted by the authors of [32]–
[39], our system-theoretical approach predicated on the time transfor-
mation method directly links a broad spectrum of well-established,
valuable results in the control systems literature proposed over infinite-
time intervals to the analysis over finite-time intervals. This is because
of the fact that the resulting time transformed dynamics is on an infinite-
time interval, and its solution is identical to the solution of the original
dynamical system over the given finite-time interval (see the proofs
of Theorems 1 and 2 below). Hence, aforementioned convergence and
boundedness properties over the infinite-time interval through, for ex-
ample, the standard Lyapunov stability theory give us the equivalent
properties for the proposed smooth finite-time distributed control archi-
tecture. Here, we also would like to note that this time transformation
method and our analysis procedure can be used for many other prob-
lems beyond the multiagent systems problem considered in this paper
via directly making many well-established infinite-time stability re-
sults available to researchers working on finite-time control algorithms.
Finally, with regard to other relevant works utilizing nonsmooth dis-
tributed control algorithms (see, for example, [23]–[25] and references
therein), we also note that the proposed approach does not require
knowledge of the upper bound on the velocity of the unknown target
and, as discussed earlier, our finite-time convergence can be assigned
a-priori without dependence on the initial conditions of agents.

1The results of [31] may be viewed as authors’ earlier work. Yet, only con-
sensus problem with static continuum of equilibria is studied there, unlike this
paper focusing on engagement problem with a dynamic equilibrium point.

2There are also other studies by the authors of [40], [41], which extend some
of these cited results. However, these studies do not derive any conditions to
show that the resulting control signals are bounded.

II. MATHEMATICAL PRELIMINARIES

In this paper, R, Rn , and Rn×m , respectively, denote the set of
real numbers, the set of n × 1 real column vectors, and the set of
n ×m real matrices; R+ denotes the set of positive real numbers;
Rn×n

+ (respectively, R
n×n
+ ) denotes the set of n × n positive-definite

(respectively, nonnegative-definite) real matrices; Z denotes the set of
integers; Z+ (respectively, Z+ ) denotes the set of positive (respectively,
nonnegative) integers; and 1n and In , respectively, denote the n × 1
vector of all ones and the n × n identity matrix. We also write (·)T for
transpose, (·)−1 for inverse, ‖ · ‖2 for the Euclidian norm, λm in (A)
(respectively, λm ax (A)) for the minimum (respectively, maximum)
eigenvalue of the Hermitian matrix A, λi (A) for the ith eigenvalue
of A (A is symmetric and the eigenvalues are ordered from least to
greatest value), diag(a) for the diagonal matrix with the vector a on
its diagonal, and [A]ij for the entry of the matrix A on the ith row and
jth column.

We now recall some notions from graph theory (see [3], [42] for
details). An undirected graph G is defined by a set VG = {1, . . . , n} of
nodes and a set EG ⊂ VG × VG of edges. If (i, j) ∈ EG , then the nodes
i and j are neighbors and the neighboring relation is indicated with
i ∼ j. The degree of a node is given by the number of its neighbors.
Letting di ∈ Z+ be the degree of node i, the degree matrix of a graph
G, D(G) ∈ Rn×n

+ , is given by D(G) � diag(d), d = [d1 , . . . , dn ]T . A
path i0 i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik , k =
1, . . . , L, and a graph G is connected if there is a path between any pair
of distinct nodes. The adjacency matrix of a graph G, A(G) ∈ Rn×n ,
is given by [A(G)]ij � 1 if (i, j) ∈ EG and [A(G)]ij � 0 otherwise.

The Laplacian matrix of a graph, L(G) ∈ R
n×n
+ , which plays a central

role in graph-theoretic treatments of networked multiagent systems, is
given by

L(G) � D(G) −A(G). (1)

In this note, we model a given networked multiagent system by
a connected and undirected graph G (unless otherwise noted), where
nodes and edges, respectively, represent agents and interagent commu-
nication links. Finally, the following lemma and remark are used in this
note.

Lemma 1. [Lemma 3.3, 1]: Let K = diag(k), k = [k1 , k2 , . . . ,
kn ]T , ki ∈ Z+ , i = 1, . . . , n, and assume that at least one element of
k is nonzero. Then, F(G) � L(G) +K ∈ Rn×n

+ and det(F(G)) �= 0
for the Laplacian of a connected and undirected graph.

As a direct consequence of Lemma 1, note that because −F(G) is a
symmetric and Hurwitz matrix, it follows from the converse Lyapunov
theory [43] that there exists a unique P ∈ Rn×n

+ satisfying

R = F(G)P + PF(G) (2)

for a given R ∈ Rn×n
+ .

Remark 1: Based on the notion from, for example, [44, Sec.
1.1.1.4], let ξ(t) denote a solution to the dynamical system given by

ẋ(t) = f (t, x(t)), x(0) = x0 . (3)

In addition, let t = θ(s) denote the time transformation, where θ(s)
is a strictly increasing and continuously differentiable function, and
define ψ(s) � ξ(t). Then,

ψ ′(s) = θ′(s)f (θ(s), ψ(s)), ψ(θ−1 (0)) = x0 (4)

where ψ ′(s) � dψ(s)/ds and θ′(s) � dθ(s)/ds.

III. PROBLEM FORMULATION

This section presents the proposed smooth finite-time dis-
tributed control architecture for the cooperative engagement problem.
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Specifically, consider a system of n agents exchanging information
among each other using their local measurements according to a con-
nected and undirected graph G. In addition, assume that a subset of
agents can sense the position of a time-varying target; that is,

p(t) =
∫ t

0
v(τ )dτ + p(0), p(t) ∈ Rl , l ∈ {1, 2, 3} (5)

with v(t) denoting the velocity of this target.3 In what follows, we
assume for the brevity of the exposition and without loss of generality
that the target has a one-dimensional position; that is, l = 1, since the
proposed algorithm to be presented can be applied as is to multiple
dimensions; that is, l > 1 (we refer to Section V for a numerical exam-
ple). We also assume that the target’s velocity is piecewise continuous
and bounded.4

For the finite-time cooperative engagement problem, we focus on
driving the positions of each agent to the position of the time-varying
target in a-priori given, user-defined finite time T (henceforth, T is
referred as the finite-time convergence constant).5 , 6 Motivated from
this standpoint, we propose the distributed control algorithm given
by7 , 8

ẋi (t) = − α

T − t

(∑
i∼j

(xi (t) − xj (t)) + ki (xi (t) − p(t))

)
,

xi (0) = xi0 (6)

where xi (t) ∈ R denotes the position of agent i, i = 1, . . . , n, and
α ∈ R+ with (6) being defined on t ∈ [0, T ). In (6), ki = 1 for a subset
of agents that can sense the position of the target and ki = 0 otherwise.
In addition, the right-hand side of (6) denotes the local control signals
of each agent; that is, ui (t), i = 1, . . . , n. Mathematically speaking,
we are interested in finding conditions that guarantee

lim
t→T

(xi (t) − p(t)) = 0, i = 1, . . . , n (7)

with bounded control signals.
For this purpose, we first transform the proposed smooth finite-time

distributed control algorithm given by (6) from t ∈ [0, T ) regular time
interval to s ∈ [0,∞) stretched time interval in the next section, where
we consider

θ(s) � T (1 − e−s ) (8)

to utilize Remark 1. We then use tools and methods from Lyapunov
stability theory for showing cooperative engagement on the new time
interval with respect to s, which consequently implies finite-time co-
operative engagement on the regular time interval with respect to t in
the sense of (7). This is because the solution to (6) on the stretched
time interval with s→ ∞ is equal to its solution on the regular time
interval with t → T .

It is also worth mentioning here that the selection of θ(s) in (8) gives
θ′(s) = T − t, which explicitly appears in (6). That is, although we

3Theoretically, the dimension of p(t) can be any finite number.
4Unlike [23]–[25], we do not assume the knowledge of the upper bound on

the target’s velocity, and hence here it is treated as unknown.
5Unlike [34]–[41], we address finite-time convergence both on a dynamic

equilibrium and with bounded controls, where the difference between the posi-
tions of each agent and time-varying target defines this dynamic equilibrium.

6Motivated by the nature of the cooperative engagement problem, we con-
sider smooth distributed control design over the user-defined time interval [0, T )
throughout this note—owing to the fact that the task under consideration com-
pletes once the agents and the target coincide as t → T .

7In (6), it is assumed that α and T are available to the agents.
8The term “

∑
i∼j (xi (t) − xj (t))” used in (6) is generally referred as the

consensus term, where it is common in many finite-time as well as infinite-time
distributed control algorithms (see, for example, books [2], [3]).

choose a specific time transformation function θ(s) given by (8) in this
note that yields to the term “T − t” in (6), this is for the brevity of the
exposition. In general, many other time transformation functions can
be chosen for the stretched time interval with s ∈ [0,∞) for addressing
finite-time cooperative engagement problem and similar analysis steps
shown in the next section can be used for each of the resulting smooth
distributed control algorithms.

IV. STABILITY ANALYSIS

We now show the stability analysis of the proposed smooth dis-
tributed control algorithm in Section III for the cooperative engagement
problem, which include its finite-time convergence properties as well
as the boundedness of local control signals of each agent. In particu-
lar, because we are interested in driving the positions of each agent to
the position of the time-varying target in a-priori given, user-defined
finite-time T , consider the state transformation given by

x̃i (t) � xi (t) − p(t) (9)

where it follows from (6) and (9) that

˙̃xi (t) = − α

T − t

(∑
i∼j

(x̃i (t) − x̃j (t)) + ki x̃i (t)

)
− v(t)

x̃(0) = x̃i0 . (10)

Letting

x̃(t) � [x̃1 (t), x̃2 (t), . . . , x̃n (t)]T ∈ Rn (11)

and F(G) � L(G) +K , where K = diag(k), k = [k1 , k2 , . . . , kn ]T ,
(10) can be rewritten in a compact form

˙̃x(t) = − α

T − t
F(G)x̃(t) − 1n v(t), x̃(0) = x̃0 . (12)

From Lemma 1, note that −F(G) is a symmetric and Hurwitz matrix,
and hence there exists a unique P ∈ Rn×n

+ satisfying (2) for a given
R ∈ Rn×n

+ .
Next, let ξ(t) denote a solution to the dynamical system given by

(12). In addition, let t = θ(s) denote the time transformation, where
θ(s) is given by (8) with s ∈ [0,∞) being the stretched time interval,
and define ψ(s) � ξ(t). It then follows from Remark 1 that

ψ ′(s) = θ′(s)
(
− α

T − T (1 − e−s )
F(G)ψ(s) + w(s)

)

= T e−s
(
− α

T e−s
F(G)ψ(s) + w(s)

)

= −αF(G)ψ(s) + T e−sw(s), ψ(θ−1 (0)) = x̃0 (13)

where w(s) � −1n v(θ(s)) and θ−1 (0) = 0. Furthermore, letting
μ(s) � T e−s , μ(s) ∈ R, it follows from (13) that

ψ ′(s) = −αF(G)ψ(s) + μ(s)w(s) (14)

μ′(s) = −μ(s) (15)

where μ(0) = T . Note that (14) and (15) do not explicitly depend on s
on the stretched time interval—unlike (12) that explicitly depends on
t on the regular time interval. To this end, we use the standard Lya-
punov stability theory in the next theorem in order to show cooperative
engagement on the new time interval with respect to s, which conse-
quently implies finite-time cooperative engagement on the regular time
interval with respect to t, as discussed earlier.

Theorem 1: Consider a networked multiagent system, where agents
exchange information using their local measurements according to a
connected and undirected graph G. In addition, consider that each agent
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utilizes the distributed control algorithm given by (6), where there exists
at least one agent that can sense the position of a time-varying target
with bounded but unknown velocity. Then, (7) holds for all initial
conditions of agent positions.

Proof: We consider the Lyapunov function candidate

V (ψ, μ) = ψTPψ + cμ2 (16)

where c ∈ R+ and P ∈ Rn×n
+ is the solution to (2) for a given R ∈

Rn×n
+ . Note that V (0, 0) = 0 and V (ψ, μ) > 0 for (ψ, μ) �= (0, 0).

Differentiating (16) with respect to s ∈ [0,∞) along trajectories of
(14) and (15) for any ψ(0) and μ(0) yields

V ′(ψ(s), μ(s)) = 2ψT (s)P (−αF(G)ψ(s) + μ(s)w(s))

+ 2cμ(s) (−μ(s))

= − αψT (s)Rψ(s) + 2μ(s)ψT (s)Pw(s)

− 2cμ2 (s) (17)

where V ′(ψ(s), μ(s)) � dV (ψ(s), μ(s))/ds. Applying Young’s in-
equality [45] to the term “2μ(s)ψT (s)Pw(s)” in (17) results in

2μ(s)ψT (s)Pw(s) ≤ 2λm ax (P )|μ(s)|‖ψ(s)‖2w
∗

≤ 1
d
‖ψ(s)‖2

2 + d|μ(s)|2 · λm ax (P )2w∗2
(18)

where d � (λm ax (P )2w∗2 )−1c ∈ R+ . Here, note that ‖w(s)‖2 ≤ w∗

used in (18) follows from the boundedness of the velocity of the
target. �

Next, it follows from (17) and (18) that

V ′(ψ(s), μ(s)) ≤ −‖ψ(s)‖2
2

(
αλm in (R) − d−1)

− |μ(s)|2
(
2c − dλm ax (P )2w∗2

)

= − ‖ψ(s)‖2
2

(
αλm in (R) − c−1 · λm ax (P )2w∗2

)

− c|μ(s)|2 . (19)

Now, setting c � 2(αλm in (R))−1λm ax (P )2w∗2 ∈ R+ yields

V ′(ψ(s), μ(s)) ≤ −αλm in (R)
2

‖ψ(s)‖2
2 − c|μ(s)|2 (20)

and hence, the dynamics given by (14) and (15) are the Lyapunov
stable for all ψ(0) and μ(0) on stretched time interval s ∈ [0,∞) and
lims→∞(ψ(s), μ(s)) = (0, 0) holds [43, Th. 4.6]. Finally, since (14)
and (15) together give (13) with μ(0) = T , ψ(s) = ξ(t) by definition
with ξ(t) being the solution to (12), and t→ T as s → ∞ by (8), the
result given by (7) is now immediate for all initial conditions of agent
positions. �

Note that Theorem 1 shows not only the convergence of the positions
of each agent to the position of the time-varying target in a-priori given,
user-defined finite-time T in the sense of (7) without dependence on
the initial conditions of these agents, but also the boundedness of
the positions of agents on the regular time interval t ∈ [0, T ) through
the Lyapunov stability on the stretched time interval s ∈ [0,∞). As
discussed earlier, letting the right-hand side of (6) be the local control
signals of each agent; that is, ui (t), i = 1, . . . , n, the next theorem
shows the condition on the boundedness of ui (t), i = 1, . . . , n.

Theorem 2: Consider a networked multiagent system, where agents
exchange information using their local measurements according to a
connected and undirected graph G. In addition, consider that each agent
utilizes the distributed control algorithm given by (6), where there exists
at least one agent that can sense the position of a time-varying target

with bounded but unknown velocity, and assume

S � αF(G) − In ∈ Rn×n
+ . (21)

Then, the local control signals of each agent are bounded.
Proof: Letting u(t) � [u1 (t), u2 (t), . . . , un (t)]T ∈ Rn , it follows

from (6) and (9) that

u(t) = − α

T − t
F(G)x̃(t) (22)

where differentiating (22) with respect to t ∈ [0, T ) yields

u̇(t) = − α

T − t
F(G) ˙̃x(t) − α

(T − t)2 F(G)x̃(t)

= − 1
T − t

Su(t) − α

T − t
F(G)(−1n v(t)). (23)

�
Next, let φ(t) denote a solution to (23). Furthermore, let t = θ(s)

denote the time transformation, where θ(s) is given by (8) with s ∈
[0,∞) being the stretched time interval, and define ρ(s) � φ(t). Then,
using identical steps shown earlier in this section, it follows from
Remark 1 that

ρ′(s) = −Sρ(s) − αF(G)w(s) (24)

where ρ′(s) � dρ(s)/ds. Note that the term “αF(G)w(s)” in (24) is
bounded by the boundedness of the velocity of the target. Note also
that −S is Hurwitz from (21). Therefore, it follows from input-to-state
stability [43, Sec. 4.5] that ρ(s) is a bounded solution to the dynamical
system given by (24) on the stretched time interval s ∈ [0,∞). Finally,
since ρ(s) = φ(t) by definition, where φ(t) is the solution to (23), and
t→ T as s→ ∞ by (8), the result is now immediate. �

The boundedness of the local control signals of each agent is shown
in Theorem 2 subject to (21); that is, ‖u(t)‖2 ≤ u∗ with u(t) given
by u(t) = [u1 (t), u2 (t), . . . , un (t)]. From a practical standpoint, it
should be mentioned based on (24) that u∗ increases as α in (6) in-
creases as well as the magnitude of the velocity of the time-varying
target increases.9 Finally, the next corollary shows how the results of
Theorems 1 and 2 hold in the case of connected and directed graphs.

Corollary 1: Consider a networked multiagent system, where
agents exchange information using their local measurements according
to a directed graph G with this graph having a spanning tree10 from the
agents that can sense the time-varying target to the rest. In addition,
consider that each agent utilizes the distributed control algorithm given
by (6), where there exists at least one agent that can sense the position
of a time-varying target with bounded but unknown velocity. Then, (7)
holds for all initial conditions of agent positions. Finally, if M is Hur-
witz with M � −αF(G) + In ∈ Rn×n , then the local control signals
of each agent is bounded.

Proof: For a connected and directed graph G subject to the span-
ning tree assumption, we first note that −F(G) is Hurwitz (see [1,
Lemma 3.3]). In this case, since −F(G) is not necessarily symmetric,
we replace the Lyapunov equation given by (2) with R = FT (G)P +
PF(G). Then, based on this Lyapunov equation, (7) readily follows
from the proof of Theorem 1. Finally, following similar steps used in
the proof of Theorem 2, one can write ρ′(s) = Mρ(s) − αF(G)w(s)
in this case. The boundedness of the local control signals is now im-
mediate since w(s) is bounded and M is Hurwitz. �

9While the calculation of u∗ is not presented, this can be readily done using,
e.g., perturbed systems theory [46] or L systems theory [47].

10A directed graph has a spanning tree if there exists a root node such that it
has directed paths to all other nodes in the graph (see, e.g., books [1]–[3]).
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Fig. 1. Response of a networked multiagent system subject to random
initial conditions with the smooth finite-time distributed control algorithm
given by (6) with T = 4 seconds and α = 10 (one-dimensional case),
where the solid lines show the positions (top) and the control signals
(bottom) of each agent and the dashed line shows the position of the
target.

Fig. 2. Response of a networked multiagent system subject to random
initial conditions with the smooth finite-time distributed control algorithm
given by (6) with T = 4 seconds and α = 10 (two-dimensional case),
where the solid lines show the planar positions of each agent and the
dashed line shows the planar position of the target.

V. ILLUSTRATIVE NUMERICAL EXAMPLE

An illustrative numerical example is presented in this section to
demonstrate the efficacy of the results in Sections III and IV. Specif-
ically, consider a networked multiagent system consisting of eight
agents; that is, n = 8, subject to a connected and undirected circle
graph, where the first two agents on this graph can sense the position
of a time-varying target; that is, ki = 1 for i = {1, 2} and ki = 0 for
i = {3, . . . , 8} in (6). In addition, we choose the finite-time conver-

gence constant as T = 4 seconds and set α = 10 in (6), which satisfies
the assumption in Theorem 2 given by (21). In what follows, random
initial conditions are considered for the agents.

Fig. 1 shows the response of this networked multiagent system in a
one-dimensional setting with the smooth finite-time distributed control
algorithm given by (6), where the solid lines show the positions (top)
and the control signals (bottom) of each agent and the dashed line
shows the position of the target given by p(t) = 2.5 + 5 sin(0.5t) +
0.5 sin(5t). As expected from Theorem 1, the positions of each agent
converges to the position of the time-varying target at T = 4 seconds
in the sense of (7). In addition, as expected from Theorem 2, the control
signals of each agent remains bounded. As noted earlier in this note,
the proposed distributed control algorithm in (6) can be applied as is
to multiple dimensions. To this end, Fig. 2 shows the responses of the
same networked multiagent system in a two-dimensional setting, where
the solid lines show the planar positions of each agent and the dashed
line shows the planar position of the target given by p(t) = [2.5 +
5 sin(0.5t) + 0.5 sin(5t), 10 cos(0.2t)]T . Specifically, in this case, the
proposed distributed control algorithm given by (6) is implemented for
each dimension simultaneously. Once again, as expected, the planar
positions of each agent converges to the planar position of the time-
varying target at T = 4 seconds.

VI. CONCLUSION

For contributing to the previous studies in networked multiagent
systems, we proposed and analyzed a smooth finite-time distributed
control architecture using a time transformation method and Lyapunov
stability theory. Specifically, under the assumption that a subset of
agents can sense the position of a time-varying target, it was shown
that the proposed architecture guarantees finite-time cooperative en-
gagement in that the difference between the positions of each agent
and this target vanishes in a-priori given, user-defined finite time with-
out dependence on the initial conditions of agents, and in the presence
of unknown but bounded velocity of this target. While this note fo-
cuses on a particular problem in the context of multiagent systems, the
proposed time transformation method and the analysis procedure can
be used for many other problems, where a-priori given, user-defined
finite-time convergence is necessary with smooth control laws.

To this end, based on the proposed time transformation method
and the analysis procedure, future research will include, first, gener-
alizations of our framework to agents having high-order (linear and
nonlinear) dynamics, and second, graph topologies that vary with re-
spect to time, where the results reported in, for example, [48] can be
useful on the latter generalization under a relaxed condition. In addi-
tion, following the results reported in [49], we will consider, third, the
communication constraints among agents, such as transmission nonlin-
earity and time-varying time-delays. Another future research direction
will be, fourth, the consideration of measurement noise in the real-
world execution of the proposed framework. In particular, since it has
high gain as time approaches to T , one can consider low-bandwidth
discretized implementations in the presence of (excessive) measure-
ment noise, where this is motivated by the results in, for example, [50].
To this end, it will be interesting to reveal the tradeoff between the
sampling time selection for discretized implementations and the sys-
tem performance. Finally, we will also consider extensions including,
fifth, the preservation of the graph connectivity, and finally, the avoid-
ance of possible interagent collisions during the real-world execution
of the proposed multiagent systems framework over t ∈ [0, T ).
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